Component	Bode plot	Characteristics
Gain, <i>K</i>	20 log K 0	If K > 1, 20 log K > 0 If K < 1, 20 log K < 0 Gain has zero phase. So when it is added to a system, it simply shifts the system's log mag curve up (K>1) or down (K<1).
Differentiator, s	0 20 dBldcd 0 90	Has a constant slope upward of 20 dB/dcd With $s = j\omega$ and $\omega = 1$, $M = 1$, so 20 log $M = 0$. So differentiator crosses ω axis of log mag plot at $\omega = 1$. Can recognize system with s in it because no matter how small ω is, log mag plot still has upward slope and ϕ starts at 90 degrees.
Integrator, $\frac{1}{s}$	0 -90	Has a constant slope downward of -20 dB/dcd With $s = j\omega$ and $\omega = 1$, $M = 1$, so 20 log $M = 0$. So integrator crosses ω axis of log mag plot at $\omega = 1$. Can recognize system with 1/s in it because no matter how small ω is, log mag plot still has downward slope and ϕ starts at -90 degrees.
1 st -order lead, <i>Ts</i> +1	$0 \frac{20 \text{ dB/dcd}}{20 \text{ dB/dcd}}$ $0 \frac{20 \text{ dB/dcd}}{0}$ $0 \frac{1}{0} \frac{1}{0$	Starts out with 0 log mag. Asymptote starts a 20 dB/dcd rise at break frequency (1/T). Actual curve is about 3 dB above low-frequency asymptote at break frequency. Phase curve starts at 0 and rises to 90 degrees. It is at 45 degrees at break frequency.
1^{st} -order lag, $\frac{1}{Ts+1}$	$0 \frac{-20 \text{ GB/Qcq}}{-90}$ $\omega_{\text{B}} = 1/\text{T}$	Starts out with 0 log mag. Asymptote starts a -20 dB/dcd fall at break frequency (1/T). Actual curve is about 3 dB below low-frequency asymptote at break frequency. Phase curve starts at 0 and falls to -90 degrees. It is at -45 degrees at break frequency.

Table 8.1 – Bode plots of common components (part 1)

Component	Bode plot	Characteristics
2^{nd} -order lead, $\frac{1}{\omega_n^2}s^2 + \frac{2\zeta}{\omega_n}s + 1$	0 A0 0B 000	Starts out with 0 log mag. Asymptote starts a 40 dB/dcd rise at break frequency, which is the natural frequency. Behavior right around break frequency depends on ζ . Phase curve starts at 0 and rises to 180 degrees. It is at 90 degrees at break frequency.
$2^{\text{nd}}\text{-order lag,}$ $\frac{1}{\frac{1}{\omega_n^2}s^2 + \frac{2\zeta}{\omega_n}s + 1}$	0 40 B/QQ	Starts out with 0 log mag. Asymptote starts a -40 dB/dcd fall at break frequency, which is the natural frequency. Behavior right around break frequency depends on ζ . Phase curve starts at 0 and falls to -180 degrees. It is at -90 degrees at break frequency.

Table 8.1 – Bode plots of common components (part 2)