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By derivation of the five-term acceleration equation with a spinning and translating reference frame, we 

see that there are two terms that appear when an object moves inside this rotating frame.  One of these 

is Coriolis acceleration, which was not well known until long after Newton worked out his three laws and 

Euler applied them to rigid bodies.  The Coriolis term is  

𝑎⃗𝐶𝑜𝑟 = 2Ω⃗⃗⃗ × 𝑣⃗𝑥𝑦 

How this term arises mathematically when there is movement in a rotating frame is the topic of another 

article (see www.aoengr.com/Dynamics/RotatingReferenceFrame.pdf).  This article explains Coriolis 

acceleration from a more pragmatic standpoint, to allow you to develop your intuition a bit regarding 

this non-intuitive concept. 

First note that the components of Coriolis acceleration involve only two velocities:  1) the rotational 

velocity of the rotating frame, usually attached to a rotating body, and 2) the velocity of an object within 

this rotating frame.  A simple case would be a rotating rod with a collar moving along the rod as shown 

in the figure below.  Thus, like normal acceleration, Coriolis acceleration results from velocity. 

 

Rotating rod with sliding collar 

To explain Coriolis and give some examples of how it manifests itself, I’d like to avail myself of a scenario 

that was used to explain Coriolis to me, when I was studying engineering in Mississippi in the middle 

1970s.  This is a cockroach walking on a vinyl LP record as shown in the figure below. 

http://www.aoengr.com/
http://www.aoengr.com/Dynamics/RotatingReferenceFrame.pdf
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Cockroach walking out on a rotating LP platter 

Let’s consider the simple situation where the rotational speed    is constant and the cockroach’s 

walking velocity is also constant.  Obviously as the cockroach walks outward, his distance from the 

center of rotation increases, and therefore his velocity due to the rotation increases.  Let’s look at this in 

detail. 

The figure below shows the cockroach at an instant in time ( t ) and then at another instant shortly 

thereafter ( t+t ).  The disk has turned through a small angle  , and the cockroach has moved out a 

tiny amount x.  At t the tangential velocity v is  * x  At  t+t , because of the increased radius, the 

tangential velocity  vtan  has increased to   *(x+x)   This increase in vtan is part of the Coriolis 

acceleration.   

 

Cockroach’s path and tangential speed after a short interval 
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Thus 

𝑎𝐶𝑜𝑟−∆𝑥 =
𝑣𝑡𝑎𝑛(𝑡 + ∆𝑡) − 𝑣𝑡𝑎𝑛(𝑡)

∆𝑡
=

Ω ∗ (x + ∆x) − Ω ∗ x

∆𝑡
= Ω

∆𝑥

∆𝑡
= Ω ∗ 𝑣𝑥 

If we make  t  ever shorter and, thus,    ever smaller, we can see that the direction of this 

acceleration is tangential, i.e. in the y-direction.  Thus 

𝑎⃗𝐶𝑜𝑟−∆𝑥 = Ω𝑣𝑥𝑗 ̂

There is another change that must also be taken into account.  A vector can change in time by increasing 

or decreasing in magnitude but also by changing direction.  The cockroach’s velocity on the disk has 

changed direction in this instant, though, for this case, the velocity is constant.  The figure below shows 

a close-up of this change, with the two vectors placed tail-to-tail. 

 

Change in vx’s direction 

As we make  t  and    ever smaller, vx’s length approaches that of the arc length of the rotated 

vector.  Thus 

∆𝑣𝑥 = ∆𝜃 ∗ 𝑣𝑥 

The acceleration due to this effect is thus 

𝑎𝐶𝑜𝑟−∆𝜃 =
∆𝑣𝑥

∆𝑡
=

∆𝜃 ∗ 𝑣𝑥

∆𝑡
= Ω ∗ 𝑣𝑥 

exactly the same result as before, due to the increase in tangential velocity.  It is also easy to see that 

with a very small   , the direction of this acceleration is exactly the same as that of  𝑎⃗𝐶𝑜𝑟−∆𝑥  , that is in 

the y-direction.  Thus 

𝑎⃗𝐶𝑜𝑟−∆𝜃 = Ω𝑣𝑥𝑗 ̂

The total Coriolis acceleration is thus the combination of these two effects. 

𝑎⃗𝐶𝑜𝑟 = 𝑎⃗𝐶𝑜𝑟−∆𝑥 + 𝑎⃗𝐶𝑜𝑟−∆𝜃 = 2Ω𝑣𝑥𝑗 ̂

Note that this is precisely the same as the cross product that results from deriving the five-term 

acceleration equation. 

𝑎⃗𝐶𝑜𝑟 = 2Ω⃗⃗⃗ × 𝑣⃗𝑥𝑦 
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This equation is more general because we are not constraining the cockroach just to walk on a straight 

path along the x-axis.  The same type of analysis could be done for any random path with the same 

result. 

One thing interesting about Coriolis acceleration that is shown by the cross product is this:  If the disk is 

rotating counter-clockwise, so that  Ω⃗⃗⃗ = Ω𝑘̂ , the Coriolis acceleration is always directed to the left of 

the path taken by the cockroach.  With clockwise rotation, Coriolis acceleration is 90° to the right of the 

path. 

Some interesting cases 

 

Cockroach walking on circular path in 
direction of rotation 

At left the cockroach has turned and is walking in a circular 
path around the platter.  With this, his tangential speed 

will increase by  vxy  from what it would be due to  alone.  
That is 

𝑣𝑡𝑎𝑛 =  Ω𝑟𝑝 + 𝑣𝑥𝑦 

 
If a light were put on the bug’s back and the lights were 
turned out, one would simply see the cockroach circling a 
central point with a tangential speed  vtan .  His absolute 

rotational velocity would be  Ω𝑋𝑌 =
𝑣𝑡𝑎𝑛

𝑟𝑝
.  As can be seen, 

𝑎⃗𝑛  and  𝑎⃗𝐶𝑜𝑟  are aligned and point from the cockroach 
toward point  O .  These, then, added together, should 
produce the normal acceleration that one would get using  
Ω𝑋𝑌  instead to calculate it.  

That is, 

𝑎⃗𝑛 + 𝑎⃗𝐶𝑜𝑟 = Ω2𝑟𝑝 + 2Ω𝑣𝑥𝑦 

But just considering the motion of the bug alone 

𝑎⃗𝑛−𝑋𝑌 = Ω𝑋𝑌
2 𝑟𝑝 = (

𝑣𝑡𝑎𝑛

𝑟𝑝
)

2

𝑟𝑝 =
(Ω𝑟𝑝 + 𝑣𝑥𝑦)

2

𝑟𝑝
= Ω2𝑟𝑝 + 2Ω𝑣𝑥𝑦 +

𝑣𝑥𝑦
2

𝑟𝑝
 

Thus, it looks as if there is a discrepancy between the two calculations, since the latter one includes the 

extra term  𝑣𝑥𝑦
2 /𝑟𝑝 .  Where does this term come from?  The answer is found by considering what the 

bug’s acceleration would be, walking on his circular path when  = 0 .  His normal acceleration on a non-

spinning disk would be precisely  𝑣𝑥𝑦
2 /𝑟𝑝 .  Thus  𝑎⃗𝑛 + 𝑎⃗𝐶𝑜𝑟  does not include the local acceleration, 

𝑎⃗𝑥𝑦 = 𝑣𝑥𝑦
2 /𝑟𝑝  due simply to the cockroach’s walking a circular path. 
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At right is shown the case where the cockroach walks a 
straight path across the disk from  A  to  B  to  C , but it 
does not pass through the center of the disk.  From the 
vector expression for  𝑎⃗𝐶𝑜𝑟 , 

𝑎⃗𝐶𝑜𝑟 = 2Ω⃗⃗⃗ × 𝑣⃗𝑥𝑦 

nothing has changed.  For this case, with a straight path 

parallel with the x-axis,  𝑣⃗𝑥𝑦 = 𝑣𝑥𝑖̂ .  Since  Ω⃗⃗⃗ = Ω𝑘̂ , the 

cross produce yields a vector  

𝑎⃗𝐶𝑜𝑟 = 2Ω𝑘̂ × 𝑣𝑥𝑖̂ = 2Ω𝑣𝑥𝑗 ̂

As stated in the last paragraph of the section above, with 
counter-clockwise rotation, 𝑎⃗𝐶𝑜𝑟 is always just 90° to the 

left of the path.  Notice that neither  Ω⃗⃗⃗  nor  𝑣⃗𝑥𝑦  change 

for any point on the path. 
 

 

Cockroach walking on offset path 

It is a mistake to think that Coriolis acceleration always is directed tangentially.  This can be seen clearly 

in this case.  At  B  in fact the Coriolis acceleration is directed normally, toward the center of rotation of 

the disk.  The Coriolis acceleration is thus only tangentially directed when the cockroach’s path passes 

through the center of rotation.  For some random path, as shown below, the Coriolis acceleration is 

always directed to the left of the path.  The path does not even have to be straight.  The Coriolis 

acceleration is always normal to the path, to the left if the rotation is counter-clockwise, because of the 

cross product. 

 

Random paths on spinning disk 

It is interesting to compare the two cases, already presented, shown in the figure below.  Let vx = vxy , 

that is, in both cases the cockroach is walking at the same pace.  The acceleration at  B  in the left-hand 

drawing is   

𝑎⃗𝑛 + 𝑎⃗𝐶𝑜𝑟 = Ω2𝑟𝑝 + 2Ω𝑣𝑥𝑦 
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Comparison of accelerations on a straight path and a circular path 

The acceleration in the right-hand drawing is instead  

𝑎⃗𝑛 + 𝑎⃗𝐶𝑜𝑟 + 𝑎⃗𝑥𝑦 = Ω2𝑟𝑝 + 2Ω𝑣𝑥𝑦 +
𝑣𝑥𝑦

2

𝑟𝑝
 

What’s interesting about this is that at  B , the tangential velocity of the cockroach in both cases is the 

same.  But the difference between the two can be seen in the case of a non-spinning disk.  Even with no 

rotation, the cockroach on the right-hand disk experiences an acceleration toward point  O , because of 

his circular path.  The cockroach on the left-hand disk, on the other hand, would experience no 

acceleration, were  = 0. 

 


