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In Dynamics it is often useful to describe motion relative to a coordinate frame that moves and that 

rotates—that is, not by referring to a inertial or Newtonian frame that is fixed to the Earth.  This can 

happen if it’s needed to describe or analyze motion of components of a vehicle, that itself is moving in a 

fixed frame.  Here we develop the so-called five-term acceleration equation in two dimensions, for the 

purpose of easier visualization.  What is developed here can easily be extended to 3-D.  This is one of the 

very nice results in Dynamics, because different types of acceleration come from this derivation, and the 

derivation itself simply involves repeated use of the product rule when differentiating vectors. 

We start by describing the motion to be analyzed, which involves every possibility of motion when there 

are two frames—one stationary and one moving and rotating—used to describe the motion.  The figure 

below shows the scenario. 

 

xy-frame moving and rotating inside XY-frame 

A conventional 2-D kinematic slab is shown.  It is moving in a fixed reference frame, denoted with capital 

letters.  On the slab is fixed a small-letter frame  with A  as its origin.  This frame moves with the slab.  

Besides moving around in  XY-space, the slab is also rotating at an angular speed  Ω , which is also 

changing at a rate  Ω̇ .  On the moving, rotating slab another point  B  has a motion of its own described 

http://www.aoengr.com/


Page 2 of 7 
 

in the little-letter coordinate system.  Thus  B  moves relative to  A , and this motion is described relative 

to the slab. 

Position 

We are interested in the motion of  B  in the XY-frame, since the absolute motion is what Newton’s 

Second Law applies to.  We start with 

𝑟𝐵 = 𝑟𝐴 + 𝑟𝐵/𝐴 

To see how  𝑟𝐵   changes with time, it is useful to break it up into magnitudes and directions using unit 

vectors.  Thus 

𝑟𝐵 = 𝑟𝐴𝑋𝐼 + 𝑟𝐴𝑌𝐽 + 𝑟𝐵 𝐴⁄ −𝑥 𝑖̂ + 𝑟𝐵 𝐴⁄ −𝑦 𝑗 ̂

Since  𝑟𝐵/𝐴  is a vector described in the little-letter coordinate system, it is more natural to express it in 

terms of  𝑖̂  and  𝑗 ̂ components.   

Velocity 

By definition 

𝑣⃗𝐵 = 𝑟̇𝐵 

We use the product rule to differentiate  𝑟𝐵 .  So 

𝑣⃗𝐵 = 𝑟̇𝐵 = 𝑟̇𝐴𝑋𝐼 + 𝑟𝐴𝑋𝐼̇ + 𝑟̇𝐴𝑌𝐽 + 𝑟𝐴𝑌𝐽̇ + 𝑟̇𝐵 𝐴⁄ −𝑥 𝑖̂ + 𝑟𝐵 𝐴⁄ −𝑥𝑖̂̇ + 𝑟̇𝐵 𝐴⁄ −𝑦 𝑗̂ + 𝑟𝐵 𝐴⁄ −𝑦 𝑗̂ ̇

Since  𝐼  and  𝐽  are fixed,  𝐼̇  and  𝐽 ̇ are both 0.  So 

𝑣⃗𝐵 = 𝑟̇𝐴𝑋𝐼 + 𝑟̇𝐴𝑌𝐽 + 𝑟̇𝐵 𝐴⁄ −𝑥 𝑖̂ + 𝑟𝐵 𝐴⁄ −𝑥𝑖̂̇ + 𝑟̇𝐵 𝐴⁄ −𝑦 𝑗̂ + 𝑟𝐵 𝐴⁄ −𝑦 𝑗̂ ̇

All  𝑟̇  are changes in the magnitudes of the corresponding  𝑟  vectors, which are speed-ups or slow-

downs.  They are velocities, by definition.  Thus  

𝑣⃗𝐵 = 𝑣𝐴𝑋𝐼 + 𝑣𝐴𝑌𝐽 + 𝑣𝐵 𝐴⁄ −𝑥 𝑖̂ + 𝑣𝐵 𝐴⁄ −𝑦 𝑗̂ + 𝑟𝐵 𝐴⁄ −𝑥𝑖̂̇ + 𝑟𝐵 𝐴⁄ −𝑦 𝑗̂ ̇

Now we need to find expressions for  𝑖̂̇  and  𝑗̂ ̇.  Since they are unit vectors, they do not change length; 

they only change direction.  They are fixed to the rotating slab  AB , so their changing depends solely on 

the slab rotation.  The figure below shows this rotation in a magnified view. 
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Rotation of unit vectors 

After a short  t , the slab has turned a small angle    counter-clockwise.  The change in the unit vector  

𝑖̂  is shown as  ∆𝑖 ̂.  The change in  𝑗 ̂ is shown as  ∆𝑗 ̂.  As t  is made shorter and shorter,  ∆𝑖 ̂ becomes 

perpendicular to  𝑖̂ , that is, rotated 90° counter-clockwise to  𝑖̂ , thus in the  𝑗-̂direction.   ∆𝑗 ̂ is directed 

in the −𝑖̂-direction.  In the limit, the magnitude of  ∆𝑖 ̂ approaches the arc length.  Since  𝑖̂  is a unit 

vector, the arc length is  1* .  So ∆𝑖̂ = ∆𝜃 𝑗̂ .  From this, in the limit, 

𝑖̂̇ =
∆𝑖̂

∆𝑡
=

∆𝜃

∆𝑡
 𝑗̂ = Ω 𝑗 ̂

And 

𝑗̂̇ =
∆𝑗̂

∆𝑡
=

∆𝜃

∆𝑡
(− 𝑖) = −Ω 𝑖̂ 

Now we can substitute these into the equation for  𝑣⃗𝐵  . 

𝑣⃗𝐵 = 𝑣𝐴𝑋𝐼 + 𝑣𝐴𝑌𝐽 + 𝑣𝐵 𝐴⁄ −𝑥 𝑖̂ + 𝑣𝐵 𝐴⁄ −𝑦 𝑗̂ + 𝑟𝐵 𝐴⁄ −𝑥 Ω 𝑗̂ − 𝑟𝐵 𝐴⁄ −𝑦  Ω 𝑖̂ 

Reorganizing 

𝑣⃗𝐵 = 𝑣𝐴𝑋𝐼 + 𝑣𝐴𝑌𝐽 + (𝑣𝐵 𝐴⁄ −𝑥 − 𝑟𝐵 𝐴⁄ −𝑦  Ω) 𝑖̂ + (𝑣𝐵 𝐴⁄ −𝑦 + 𝑟𝐵 𝐴⁄ −𝑥 Ω) 𝑗 ̂

On the right-hand side, after the first two terms, all of the terms have “B/A” in them.  This indicates that  

the location and velocity of  B  is expressed in the little-letter coordinate system.  Since we already have 

a lower-case  x  or  y  in the subscript, the “B/A” is somewhat redundant, and we shall dispense with it.  

Thus 

𝑣⃗𝐵 = 𝑣𝐴𝑋𝐼 + 𝑣𝐴𝑌𝐽 + (𝑣𝑥 − 𝑟𝑦  Ω) 𝑖̂ + (𝑣𝑦 + 𝑟𝑥 Ω) 𝑗̂ 

Note that there are two velocities in the little-letter system.  In the term  𝑣𝑥 − 𝑟𝑦  Ω , for example,  𝑣𝑥  is 

the rate of lengthening of the  𝑟𝑥 vector, while  𝑟𝑥 Ω  is a tangential velocity due purely to the rotation of 

the slab.  Note that even if  B  were fixed to the plate, so that  𝑣𝑥 = 0 ,  B  still has a velocity due to the 

rotation of the plate and the location of  B  away from the xy-origin. 

We can use this equation to reconstruct a vector version of  𝑣⃗𝐵   that does not include unit vectors.   

𝑣⃗𝐵 = 𝑣⃗𝐴 + 𝑣⃗𝑥𝑦 + Ω⃗⃗⃗ × 𝑟𝑥𝑦 
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Since  Ω⃗⃗⃗ × 𝑟𝑥𝑦  is due to  , we can call this velocity 𝑣⃗Ω .  Then 

𝑣⃗𝐵 = 𝑣⃗𝐴 + 𝑣⃗𝑥𝑦 + 𝑣⃗Ω 

This is the three-term velocity equation.  Recall that the subscript  xy  is a shorthand for  B/A .  If  B  is a 

fixed point on a component, then  vxy = 0 .  The term  Ω⃗⃗⃗ × 𝑟𝑥𝑦  is thus  𝑣⃗𝐵 𝐴⁄  .  Thus the derived formula is 

the well-known relative velocity formulae 

𝑣⃗𝐵 = 𝑣⃗𝐴 + 𝑣⃗𝐵/𝐴 

𝑣⃗𝐵/𝐴 = 𝜔⃗⃗⃗𝐴𝐵 × 𝑟𝐵/𝐴 

We’ve seen so far how the three-term velocity equation results from vector differentiation.  A physical 

picture of what is at play is shown in the figure below. 

 

Three velocities that result from differentiating displacement vector 

𝑣⃗𝐴  is just the translational movement of the xy-origin in the XY-frame.  𝑣⃗𝑥𝑦  is the translational motion 

of point  B  in the xy-frame, that is, on the slab.  𝑣⃗Ω  is the motion of  B  due to the rotation of the slab. 

Acceleration 

By definition 

𝑎⃗𝐵 = 𝑣̇⃗𝐵  

We start with the three-term velocity equation in its detailed form above, so that we can see what 

accelerations result from what differentiations. 

𝑣⃗𝐵 = 𝑣𝐴𝑋𝐼 + 𝑣𝐴𝑌𝐽 + (𝑣𝐵 𝐴⁄ −𝑥 − 𝑟𝐵 𝐴⁄ −𝑦  Ω) 𝑖̂ + (𝑣𝐵 𝐴⁄ −𝑦 + 𝑟𝐵 𝐴⁄ −𝑥 Ω) 𝑗 ̂

𝑣̇⃗𝐵 = 𝑣̇𝐴𝑋𝐼 + 𝑣𝐴𝑋𝐼̇ + 𝑣̇𝐴𝑌𝐽+𝑣𝐴𝑌𝐽̇ + (𝑣̇𝑥 − 𝑟̇𝑦  Ω − 𝑟𝑦  Ω̇) 𝑖̂ + (𝑣𝑥 − 𝑟𝑦  Ω) 𝑖̂̇ + (𝑣̇𝑦 + 𝑟̇𝑥 Ω + 𝑟𝑥 Ω̇) 𝑗̂

+ (𝑣𝑦 + 𝑟𝑥 Ω)  𝑗̂ ̇
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Again   𝐼  and  𝐽  belong to the fixed frame, so they don’t change and are 0.  Also we can substitute in the 

results for  𝑖̂̇  and  𝑗̂ ̇ previously calculated.  𝑟̇  is 𝑣 , and  𝑣̇  is 𝑎 . 

𝑣̇⃗𝐵 = 𝑎𝐴𝑋𝐼 + 𝑎𝐴𝑌𝐽 + (𝑎𝑥 − 𝑣𝑦  Ω − 𝑟𝑦  Ω̇) 𝑖̂ + (𝑣𝑥 − 𝑟𝑦  Ω)Ω 𝑗̂ + (𝑎𝑦 + 𝑣𝑥 Ω + 𝑟𝑥 Ω̇) 𝑗̂

+ (𝑣𝑦 + 𝑟𝑥 Ω)(−Ω 𝑖)̂ 

𝑎⃗𝐵 = 𝑎𝐴𝑋𝐼 + 𝑎𝐴𝑌𝐽 + (𝑎𝑥 − 2𝑣𝑦  Ω − 𝑟𝑦  Ω̇ − 𝑟𝑥 Ω2) 𝑖̂ + (𝑎𝑦 + 2𝑣𝑥 Ω + 𝑟𝑥 Ω̇ − 𝑟𝑦  Ω
2) 𝑗̂ 

This is the five-term acceleration equation.  The five accelerations, though they arose simply from 

applying the product rule to vector differentiation, can be ascribed definitive physical meaning.  Let’s 

define them first with a shorthand notation and then discuss their characteristics. 

1. 𝑎⃗𝐴 = 𝑎𝐴𝑋 𝐼 + 𝑎𝐴𝑌  𝐽 , the acceleration of point  A in the fixed  XY-frame 

2. 𝑎⃗𝑥𝑦 = 𝑎𝑥 𝑖̂ + 𝑎𝑦  𝑗 ̂ , the acceleration of  B  within the moving, rotating xy-frame 

3. 𝑎⃗𝐶 = −2𝑣𝑦  Ω 𝑖̂ + 2𝑣𝑥 Ω 𝑗 ̂ , the Coriolis acceleration of  B 

4. 𝑎⃗𝑡 = −𝑟𝑦  Ω̇ 𝑖̂ + 𝑟𝑥 Ω̇ 𝑗 ̂ , the tangential acceleration of  B 

5. 𝑎⃗𝑛 = −𝑟𝑥 Ω2 𝑖̂ − 𝑟𝑦  Ω
2 𝑗 ̂ , the normal acceleration of  B 

So 

𝑎⃗𝐵 = 𝑎⃗𝐴 + 𝑎⃗𝑥𝑦 + 𝑎⃗𝐶 + 𝑎⃗𝑡 + 𝑎⃗𝑛 

𝑎⃗𝐴  and  𝑎⃗𝑥𝑦  are both independent accelerations and do not involve the rotation of the slab.  Normally 

in an analysis they will have to be given or observed.  The other three accelerations do involve the 

rotation of the slab.  𝑎⃗𝑡  involves a speed-up of the tangential velocity,  𝑣⃗Ω , simply because the spin 

speed is increasing…or a slow-down in  𝑣⃗Ω because the spin speed is decreasing.  𝑎⃗𝑛  is due to the 

constant change in direction of  𝑣⃗Ω  as it seemingly rotates about  A .  Note that this is directed opposite 

to  𝑟𝑥𝑦 , which is  𝑟𝐵/𝐴 .  The third term, Coriolis acceleration, is the most puzzling and misunderstood of 

the five.  It results from a combination of movements:  movement on the slab while it is rotating.  It was 

not even known until long after Newton developed his three laws and Euler extended them to rigid 

bodies.  I have written a separate article on Coriolis acceleration that can be found at 

www.aoengr.com/Dynamics/CoriolisAcceleration.pdf.   

The three accelerations involving  Ω⃗⃗⃗  can also be cast as cross products.  

3. 𝑎⃗𝐶 = 2 Ω⃗⃗⃗ × 𝑣⃗𝑥𝑦  , the Coriolis acceleration of  B 

4. 𝑎⃗𝑡 = Ω̇⃗⃗⃗ × 𝑟𝑥𝑦  , the tangential acceleration of  B 

5. 𝑎⃗𝑛 = Ω⃗⃗⃗ × (Ω⃗⃗⃗ × 𝑟𝑥𝑦)  , the normal acceleration of  B 

That these are equivalent to the unit-vector versions above can be seen as follows.  The magnitude 

equivalency can be verified by inspection.  The directions can be seen in that  in 2-D, positive  Ω⃗⃗⃗  and  Ω̇⃗⃗⃗  

point out of the slab.  Pre-crossing them with a vector produces a vector that is rotated 90° to the right 

of the second vector in the cross-product.   Also, since both  Ω⃗⃗⃗  and  Ω̇⃗⃗⃗   point in the 𝑘̂ direction (if they 

are positive), they will convert  𝑖̂-components into  𝑗-̂components and  𝑗-̂components into  −𝑖̂-

http://www.aoengr.com/Dynamics/CoriolisAcceleration.pdf
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components.  Note that  𝑎⃗𝐶   and  𝑎⃗𝑡  have y-components in the  −𝑖̂-direction and x-components in the  

𝑗-̂direction.  With  𝑎⃗𝑛 , there is a double pre-crossing by  Ω⃗⃗⃗ .  Thus the direction is turned 180° around 

from  𝑟𝑥𝑦 .  In the second pre-cross, the x-components that had been turned into the  𝑗-̂direction get 

turned another 90° into the  −𝑖̂-direction.  Note that in the unit-vector version of  𝑎⃗𝑛 , x-components 

stay as  𝑖̂-components, and y-components stay as  𝑗-̂components…but both are now negative.   

 

Five accelerations with a rotating frame 

The figure above shows an example of the five accelerations.  𝑎⃗𝐴  and  𝑎⃗𝑥𝑦  are independent and could 

be drawn in any direction.  The Coriolis acceleration is perpendicular and to the left of  𝑣⃗𝑥𝑦  since the 

slab is rotating counter-clockwise.  𝑎⃗𝑡  is perpendicular and to the left of the line from  A  to  B  since  Ω̇⃗⃗⃗  

is counter-clockwise.  𝑎⃗𝑛  leads from  B  back toward the apparent center of rotation at  A .   

Though this is explained in 2-D for visualization purposed, it is equally valid for 3-D.  

Also noteworthy is that the center of rotation of the slab does not have to be at  A .  It does look to an 

observer at  A as if the slab is rotating about him.  But the rotation point does not even have to be fixed.  

It could change with time, like an instant center does, in the general case.  It could even be, if we take 

the special case of  B  not moving on the slab, that  B  is the center of rotation.  But all of the above is 

still true, and we can center our rotating coordinate system at any point on the slab.  I would like to 

work out this counter-case at some point, just to demonstrate it.    

Relationship between large- and small-letter coordinate systems 

In the three-term velocity equation and in the five-term acceleration equation, the first term on the 

right will be in the large-letter coordinate system and the rest in the small-letter coordinate system.  It 

will be desired to get everything in the large-letter system, so expressions need to be worked out for  𝑖̂ ,  

𝑗 ̂, and  𝑘̂ in terms of  𝐼 ,  𝐽 , and  𝐾 .  We return to the original drawing, which explained the scenario, 

and focus on the two sets of unit vectors. 
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Relationship between small- and large-letter unit vectors 

Referring to the magnified drawing of the unit vectors at right, we can see that 

𝑖̂ = cos 𝜃 𝐼 + sin 𝜃 𝐽 

𝑗̂ = −sin 𝜃 𝐼 + cos 𝜃 𝐽 

The last four terms of the acceleration are written in terms of  𝑖̂  and  𝑗 ̂.  They will have to have these 

expressions substituted in to have these acceleration in the fixed coordinate system. 


